Example
The demand for coffee beans follows the inverse demand `P = 1400 - 2 Q_Z - 2 Q_Y`.
Zach chooses his quantity `Q_Z` first, then Yann follows.
Yann's Best Response Function
When Yann enters the market, he chooses the best response to `Q_Z`.
Yann's revenue is `R\left(Q_Y\right) = PQ = \left(1400 - 2 Q_Z - 2 Q_Y\right) Q_Y`.
Yann's marginal revenue is `MR\left(Q_Y\right) = 1400 - 2Q_Z - 4Q_Y`.
Yann's marginal cost is `MC\left(Q_Y\right) = 200`.
Yann maximizes profit when
$$ \begin{align*} MC\left(Q_Y\right) &= MR\left(Q_Y\right) \\ 200 &= 1400 - 2Q_Z - 4Q_Y \\ 4Q_Y &= 1200 - 2Q_Z \\ Q_Y &= 300 - \frac{Q_Z}{2} \end{align*} $$Zach's profit maximization problem
Zach's maximizes `\Pi_Z \left(Q_Z \right) = \left(1400 - 2 Q_Z - 2 Q_Y\right) Q_Z -200 Q_Z`
Plugging `Q_Y = 300 - \frac{Q_Z}{2}` gives
$$ \begin{align*} \Pi_Z \left( Q_Z \right) &= \left(1400 - 2 Q_Z - 2 \left( 300 - \frac{Q_Z}{2} \right) \right) Q_Z - 200 Q_Z \\ &= \left(1400 - 2 Q_Z - 600 + Q_Z \right) Q_Z - 200 Q_Z \\ &= \left( 800 - Q_Z \right) Q_Z - 200 Q_Z \\ \end{align*} $$Zach's profit is composed of a revenue `R \left( Q_Z \right) = \left( 800 - Q_Z \right) Q_Z` and a cost `C \left( Q_Z \right) = 200 Q_Z`.
When Zach maximizes profit
$$ \begin{align*} MC \left( Q_Z \right) &= MR \left( Q_Z \right) \\ 200 &= 800 - 2 Q_Z \\ 2 Q_Z &= 600 \\ Q_Z &= 300 \end{align*} $$Zach produces 300 coffee beans. Yann produces `Q_Y = 300 - \frac{300}{2} = 150` coffee beans.
Question
The inverse demand on the market for coffee is `P = 210 - 5 ( Q_Z + Q_Y )`.
Zach faces marginal costs equal to `60`.
Yann faces marginal costs equal to `150`.
What is the Stackelberg Equilibrium?
In equilibrium, `Q_Z = 24.0` and `Q_Y = -6.0`.
Maximizing Zach's profit give
$$ \begin{align*} MC_Z &= MR_Z \\ 60 &= 180.0 - 5 Q_Z \\ 5 Q_Z &= 180.0 - 60 \\ 5 Q_Z &= 120.0 \\ Q_Z &= \frac{ 120.0 }{ 5 } \\ Q_Z &= 24.0 \end{align*} $$Plug `Q_Z = 24.0` into Yann's Best Response Function:
$$ \begin{align*} Q_{ Y } &= 6.0 - \frac{Q_Z}{2} \\ &= 6.0 - \frac{ 24.0 }{2} \\ &= 6.0 - 12.0 \\ &= -6.0 \end{align*} $$