Example
The market for cookies is huge, with many consumers and many sellers.
The supply follows the equation `Q_S = 3 P`.
The demand follows the equation `Q_D = 10 - 2 P`.
In equilibrium, supply equals demand
$$ \begin{align*} Q_S &= Q_D \\ 3 P &= 10 - 2 P \\ 5 P &= 10 \\ P &= 2 \end{align*} $$In equilibrium, a banana is sold $2 and there are 6 bananas on the market.
Question
The supply equation for bananas is `Q_S = -66 + 66 P`.
The demand is `Q_D = 739 - 95 P`.
What is the equilibrium price? What is the equilibrium quantity?
Step 1: Equate supply and demand
$$
\begin{align*}
Q_S &= Q_D \\
-66 + 66 P &= 739 - 95 P \\
95 P + 66 P &= 739 + 66 \\
(95 + 66) P &= 739 + 66 \\
P &= \frac{739 + 66}{95 + 66} \\
P &= 5.0
\end{align*}
$$
Step 2: Plug into the supply curve (or the demand curve)
$$
\begin{align*}
Q_S &= -66 + 66 \times 5.0 \\
Q_S &= 264.0
\end{align*}
$$
$$
\begin{align*}
Q_S &= Q_D \\
-66 + 66 P &= 739 - 95 P \\
95 P + 66 P &= 739 + 66 \\
(95 + 66) P &= 739 + 66 \\
P &= \frac{739 + 66}{95 + 66} \\
P &= 5.0
\end{align*}
$$
Step 2: Plug into the supply curve (or the demand curve)
$$
\begin{align*}
Q_S &= -66 + 66 \times 5.0 \\
Q_S &= 264.0
\end{align*}
$$
$$
\begin{align*}
Q_S &= -66 + 66 \times 5.0 \\
Q_S &= 264.0
\end{align*}
$$