Example
The inverse demand for coffee beans is $$P = 1400 - 2 Q_Z - 2 Q_Y$$
Zach chooses his quantity `Q_Z` first, then Yann follows.
Yann's Best Response Function
When Yann enters the market, he chooses the best response to `Q_Z`.
Yann's revenue is `R_Y = PQ = \left(1400 - 2 Q_Z - 2 Q_Y\right) Q_Y`.
Yann's marginal revenue is `MR_Y = 1400 - 2Q_Z - 4Q_Y`.
Yann's marginal cost is `MC_Y = 200`.
Yann maximizes profit when $$ \begin{align*} MC_Y &= MR_Y \\ 200 &= 1400 - 2Q_Z - 4Q_Y \\ 4Q_Y &= 1200 - 2Q_Z \\ Q_Y &= 300 - \frac{Q_Z}{2} \end{align*} $$
Zach's profit maximization problem
Zach's maximizes $$\Pi_Z = \left(1400 - 2 Q_Z - 2 Q_Y\right) Q_Z -200 Q_Z$$
Plugging `Q_Y = 300 - \frac{Q_Z}{2}` gives $$ \begin{align*} \Pi_Z &= \left(1400 - 2 Q_Z - 600 + Q_Z \right) Q_Z - 200 Q_Z \\ &= \left( 800 - Q_Z \right) Q_Z - 200 Q_Z \\ \end{align*} $$
Zach's profit is composed of a revenue `R_Z = \left( 800 - Q_Z \right) Q_Z` and a cost `C_Z= 200 Q_Z`.
When Zach maximizes profit $$ \begin{align*} MC_Z &= MR_Z \\ 200 &= 800 - 2 Q_Z \\ 2 Q_Z &= 600 \\ Q_Z &= 300 \end{align*} $$
Zach produces 300 coffee beans. Yann produces `Q_Y = 300 - \frac{300}{2} = 150` coffee beans.
Question
This question is available to anyone who signs up.