Welfare

Welfare (or Total Surplus) sums the Consumer Surplus and the Producer Surplus. $$TS = CS + PS$$

Example

The supply curve for bananas is `Q_S = 3P` and the demand for bananas is `Q_D = 10 - 2 P`.

In equilibrium,

$$ \begin{align*} Q_S &= Q_D \\ 3P &= 10 - 2P \\ 5P &= 10 \\ P &= 2 \end{align*} $$

A banana is sold $2 in equilibrium. So producers will supply 3x2=6 bananas.

The inverse supply is `P = \frac{Q_S}{3}`.

The inverse demand is `P = \frac{10 - Q_D}{2} = 5 - \frac{Q_D}{2}`.

Consumer Surplus is `\text{CS} = \frac{(5 - 2) \times 6}{2} = 9`.

Producer Surplus is `\text{PS} = \frac{(2 - 0) \times 6}{2} = 6`.

Total Surplus is `\text{TS} = \text{CS} + \text{PS} = 9 + 6 = 15`.

Question

The inverse demand for cookies is `P = 12891 - 98 Q_d` and the supply is `P = 1191 + 32 Q_s`.

What are the equilibrium price and quantity? What is the Total Surplus?

Step 1: Find the equilibrium price and quantity

$$ \begin{align*} 1191 + 32 Q &= 12891 - 98 Q \\ 98 Q + 32 Q &= 12891 - 1191 \\ (98 + 32) Q &= 12891 - 1191 \\ Q &= \frac{12891 + 1191}{98 + 32} \\ Q &= 90.0 \end{align*} $$ Therefore $$ P = 1191 + 32 Q = 1191 + 32 \times 90.0 = 4071.0 $$

Step 2: Draw the graph

Step 3: Calculate the Consumer Surplus.

`\text{CS} = \frac{(12891 - 4071.0) \times 90.0}{2} = 396900.0`.

Step 4: Calculate the Producer Surplus.

`\text{PS} = \frac{(4071.0 - 1191) \times 90.0}{2} = 129600.0`.

Step 5: Calculate the Total Surplus.

`\text{TS} = \text{CS} + \text{PS} = 396900.0 + 129600.0 = 526500.0`.