Welfare

Welfare (or Total Surplus) sums the Consumer Surplus and the Producer Surplus. $$TS = CS + PS$$

Example

The supply curve for bananas is `Q_S = 3P` and the demand for bananas is `Q_D = 10 - 2 P`.

In equilibrium,

$$ \begin{align*} Q_S &= Q_D \\ 3P &= 10 - 2P \\ 5P &= 10 \\ P &= 2 \end{align*} $$

A banana is sold $2 in equilibrium. So producers will supply 3x2=6 bananas.

The inverse supply is `P = \frac{Q_S}{3}`.

The inverse demand is `P = \frac{10 - Q_D}{2} = 5 - \frac{Q_D}{2}`.

Consumer Surplus is `\text{CS} = \frac{(5 - 2) \times 6}{2} = 9`.

Producer Surplus is `\text{PS} = \frac{(2 - 0) \times 6}{2} = 6`.

Total Surplus is `\text{TS} = \text{CS} + \text{PS} = 9 + 6 = 15`.

Question

The inverse demand for cookies is `P = 15691 - 96 Q_d` and the supply is `P = 2651 + 67 Q_s`.

What are the equilibrium price and quantity? What is the Total Surplus?

Step 1: Find the equilibrium price and quantity

$$ \begin{align*} 2651 + 67 Q &= 15691 - 96 Q \\ 96 Q + 67 Q &= 15691 - 2651 \\ (96 + 67) Q &= 15691 - 2651 \\ Q &= \frac{15691 + 2651}{96 + 67} \\ Q &= 80.0 \end{align*} $$ Therefore $$ P = 2651 + 67 Q = 2651 + 67 \times 80.0 = 8011.0 $$

Step 2: Draw the graph

Step 3: Calculate the Consumer Surplus.

`\text{CS} = \frac{(15691 - 8011.0) \times 80.0}{2} = 307200.0`.

Step 4: Calculate the Producer Surplus.

`\text{PS} = \frac{(8011.0 - 2651) \times 80.0}{2} = 214400.0`.

Step 5: Calculate the Total Surplus.

`\text{TS} = \text{CS} + \text{PS} = 307200.0 + 214400.0 = 521600.0`.