Welfare

Welfare (or Total Surplus) sums the Consumer Surplus and the Producer Surplus. $$TS = CS + PS$$

Example

The supply curve for bananas is `Q_S = 3P` and the demand for bananas is `Q_D = 10 - 2 P`.

In equilibrium,

$$ \begin{align*} Q_S &= Q_D \\ 3P &= 10 - 2P \\ 5P &= 10 \\ P &= 2 \end{align*} $$

A banana is sold $2 in equilibrium. So producers will supply 3x2=6 bananas.

The inverse supply is `P = \frac{Q_S}{3}`.

The inverse demand is `P = \frac{10 - Q_D}{2} = 5 - \frac{Q_D}{2}`.

Consumer Surplus is `\text{CS} = \frac{(5 - 2) \times 6}{2} = 9`.

Producer Surplus is `\text{PS} = \frac{(2 - 0) \times 6}{2} = 6`.

Total Surplus is `\text{TS} = \text{CS} + \text{PS} = 9 + 6 = 15`.

Question

The inverse demand for cookies is `P = 240 - 64 Q_d` and the supply is `P = 44 + 34 Q_s`.

What are the equilibrium price and quantity? What is the Total Surplus?

Step 1: Find the equilibrium price and quantity

$$ \begin{align*} 44 + 34 Q &= 240 - 64 Q \\ 64 Q + 34 Q &= 240 - 44 \\ (64 + 34) Q &= 240 - 44 \\ Q &= \frac{240 + 44}{64 + 34} \\ Q &= 2.0 \end{align*} $$ Therefore $$ P = 44 + 34 Q = 44 + 34 \times 2.0 = 112.0 $$

Step 2: Draw the graph

Step 3: Calculate the Consumer Surplus.

`\text{CS} = \frac{(240 - 112.0) \times 2.0}{2} = 128.0`.

Step 4: Calculate the Producer Surplus.

`\text{PS} = \frac{(112.0 - 44) \times 2.0}{2} = 68.0`.

Step 5: Calculate the Total Surplus.

`\text{TS} = \text{CS} + \text{PS} = 128.0 + 68.0 = 196.0`.