Utility Maximization

A consumer maximizes utility when:
  1. `MRS = MRT`
  2. `Xp_X + Yp_Y = I`

Example

Alice buys chocolate (X) for `p_X = $4` and strawberries (Y) for `p_Y = $2`. Her budget is `I = $12`. Her utility is measured by `u \left( X, Y \right) = X Y^2`.

Step 1: MRS = MRT

$$ \begin{align*} MRS &= MRT \\ -\frac{MU_X}{MU_Y} &= -\frac{p_X}{p_Y} \\ -\frac{Y^2}{2XY} &= -\frac{2}{4} \\ - \frac{Y}{2X} &= - \frac{2}{4} \\ Y &= X \end{align*} $$

Step 2: Plug back in the budget

$$ \begin{align*} Xp_X + Yp_Y &= I \\ 4X + 2Y &= 12 \\ 4X + 2X &= 12 \\ 6X &= 12 \\ X &= 2 \end{align*} $$

Step 3: Conclude

Alice will buy 2 chocolates and 2 strawberries.

Question

Alice's utility function is `u \left( X, Y \right) = 10 X^{{3}} Y^{{27}}`..

.

The price of chocolate (X) is `p_X = $3`, and the price of strawberry Y is `p_Y = $3`. Alice has in her pocket `I = $30`.

What quantities X and Y maximizes Alice's utility?

Alice will buy 1 chocolates and 9 strawberries.

Step 1: MRS = MRT

$$ \begin{align*} MRS &= MRT \\ -\frac{MU_X}{MU_Y} &= -\frac{p_X}{p_Y} \\ \frac{10 \times 3 X^{2} Y^{27}}{10 \times 27 X^{3} Y^{26}} &= \frac{3}{3} \\ \frac{3 Y}{27 X} &= \frac{3}{3} \\ \frac{Y}{X} &= \frac{3 \times 27}{3 \times 3} \\ \frac{Y}{X} &= \frac{9}{1} \\ \frac{Y}{X} &= 9.0 \\ Y &= 9.0 X \end{align*} $$

Step 2: Plug back in the budget

$$ \begin{align*} 3 X + 3 Y = 30 \\ 3 X + 3 \times 9.0 X = 30 \\ \left( 3 + 3 \times 9.0 \right) X = 30 \\ 30.0 X = 30 \\ X = \frac{30}{30.0} \\ X = 1 \end{align*} $$

Step 3: Conclude

`X=1` and `Y = 9.0 X = 9`