Utility Maximization

A consumer maximizes utility when:
  1. `MRS = MRT`
  2. `Xp_X + Yp_Y = I`

Example

Alice buys chocolate (X) for `p_X = $4` and strawberries (Y) for `p_Y = $2`. Her budget is `I = $12`. Her utility is measured by `u \left( X, Y \right) = X Y^2`.

Step 1: MRS = MRT

$$ \begin{align*} MRS &= MRT \\ -\frac{MU_X}{MU_Y} &= -\frac{p_X}{p_Y} \\ -\frac{Y^2}{2XY} &= -\frac{2}{4} \\ - \frac{Y}{2X} &= - \frac{2}{4} \\ Y &= X \end{align*} $$

Step 2: Plug back in the budget

$$ \begin{align*} Xp_X + Yp_Y &= I \\ 4X + 2Y &= 12 \\ 4X + 2X &= 12 \\ 6X &= 12 \\ X &= 2 \end{align*} $$

Step 3: Conclude

Alice will buy 2 chocolates and 2 strawberries.

Question

Alice's utility function is `u \left( X, Y \right) = 3 X^{{80}} Y^{{21}}`..

.

The price of chocolate (X) is `p_X = $8`, and the price of strawberry Y is `p_Y = $3`. Alice has in her pocket `I = $404`.

What quantities X and Y maximizes Alice's utility?

Alice will buy 40 chocolates and 28 strawberries.

Step 1: MRS = MRT

$$ \begin{align*} MRS &= MRT \\ -\frac{MU_X}{MU_Y} &= -\frac{p_X}{p_Y} \\ \frac{3 \times 80 X^{79} Y^{21}}{3 \times 21 X^{80} Y^{20}} &= \frac{8}{3} \\ \frac{80 Y}{21 X} &= \frac{8}{3} \\ \frac{Y}{X} &= \frac{8 \times 21}{3 \times 80} \\ \frac{Y}{X} &= \frac{7}{10} \\ \frac{Y}{X} &= 0.7 \\ Y &= 0.7 X \end{align*} $$

Step 2: Plug back in the budget

$$ \begin{align*} 8 X + 3 Y = 404 \\ 8 X + 3 \times 0.7 X = 404 \\ \left( 8 + 3 \times 0.7 \right) X = 404 \\ 10.1 X = 404 \\ X = \frac{404}{10.1} \\ X = 40 \end{align*} $$

Step 3: Conclude

`X=40` and `Y = 0.7 X = 28`