Example
Alice's utility function is `u \left( X, Y \right) = XY`.
Her marginal rate of substitution is the ratio of the marginal utilities `MU_X` and `MU_Y`:
$$ MRS = - \frac{MU_X \left( X, Y \right)}{MU_Y \left( X, Y \right)} = - \frac{Y}{X} $$Question
Alice's utility function is `u (X, Y) = X^{561} Y^{786}`.
What is the Marginal Rate of Substitution of strawberries for a chocolate in function of X and Y?
$$
MU_X = \frac{du(X, Y)}{dX} = 561 X^{561 - 1} Y^{786} = 561 X^{560} Y^{786}
$$
$$
MU_Y = \frac{du(X,Y)}{dY} = 786 X^{561} Y^{786 - 1} = 786 X^{561} Y^{785}
$$
Therefore
$$ MRS = - \frac{MU_X \left( X, Y \right)}{MU_Y \left( X, Y \right)} = - \frac{561 X^{560} Y^{786}}{786 X^{561} Y^{785}} = - \frac{561 Y}{786 X} $$