Example
Alice's utility function is `u \left( X, Y \right) = XY`.
Her marginal rate of substitution is the ratio of the marginal utilities `MU_X` and `MU_Y`:
$$ MRS = - \frac{MU_X \left( X, Y \right)}{MU_Y \left( X, Y \right)} = - \frac{Y}{X} $$Question
Alice's utility function is `u (X, Y) = X^{458} Y^{324}`.
What is the Marginal Rate of Substitution of strawberries for a chocolate in function of X and Y?
$$
MU_X = \frac{du(X, Y)}{dX} = 458 X^{458 - 1} Y^{324} = 458 X^{457} Y^{324}
$$
$$
MU_Y = \frac{du(X,Y)}{dY} = 324 X^{458} Y^{324 - 1} = 324 X^{458} Y^{323}
$$
Therefore
$$ MRS = - \frac{MU_X \left( X, Y \right)}{MU_Y \left( X, Y \right)} = - \frac{458 X^{457} Y^{324}}{324 X^{458} Y^{323}} = - \frac{458 Y}{324 X} $$